norden.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Moin! Dies ist die Mastodon-Instanz für Nordlichter, Schnacker und alles dazwischen. Folge dem Leuchtturm.

Administered by:

Server stats:

3.4K
active users

#rag

3 posts3 participants0 posts today

Synergizing RAG and Reasoning: A Systematic Review

By synergizing retrieval mechanisms with advanced reasoning, LLMs can now tackle increasingly complex problems. This paper presents a systematic review of the collaborative interplay between RAG and reasoning, clearly defining "reasoning" within the RAG context.

semanticscholar.org/paper/Syne

Citegeist is a free tool that helps you find articles related to a topic you are interested in. You need to seed it by entering the abstract of a relevant article or by uploading a relevant article. Citegeist not only finds related articles, but it generates a short report with info from the related articles also!
Citegeist works by using RAG info retrieval on the arxiv corpus of research papers.

citegeist.org

#research #science #2ndOrderSearch
#Citegeist #arxivTools #RAG

Understand RAG at Easter? 🐣 Why not use the time to learn something new — and build your own local PDF chatbot?

Learn how chunking, embeddings and vector search work in practice - with LangChain, FAISS, Ollama and Mistral running entirely on your machine (no API key required).

Perfect for beginners - here's the full guide & GitHub repo 👇

:blobcoffee: step-by-step guide: bit.ly/3EfOHB9
:blobcoffee: GitHub Repo: bit.ly/3EtqYgK

Continued thread

🧵 8/9 The 'Goal': Dissemination of IPCC Reports and #climatechange lit using #semantification as a basis. #ClimateKG is aimed at being a service for indexing and publishing. Status: Prototype (PoC) #1: 'IPCC Reports and City Climate Change Plans: Proof of concept prototype - Open Climate Reader' semanticclimate.github.io/city - Currently interfaces are for search and #RAG #LLM - all built on #openscience based #digitalsoveriegn tech. The goal sits off in future, over the horizon - but its we're going

🔍 KI-Chatbots & Online-Kataloge?
24. April, 09:00–13:00

🧠 Tillmann Scheel (AboutSomethinK/ASK) & Moritz Mutter (VÖBB) erklären:

- Wie RAG Sprachmodelle mit externen Wissensquellen (Bibliothekskatalogen) verknüpft
- Technologiegrenzen: Kontextignoranz, Widersprüche, unpräzise Daten
- KI-Praxistauglichkeit für Datensammlungen
-„Meta-Prompting“-Strategien zur Optimierung von Chatbots

🎯 dgi-info.de/event/ki-chatbots-

Deutsche Gesellschaft für Information & Wissen e.V.KI-Chatbots zur Erschließung von Online-Katalogen? - Deutsche Gesellschaft für Information & Wissen e.V.Wie funktionieren Katalog-Chatbots und RAG-Systeme, was können sie und was nicht? Was kann man ihnen durch Meta-Prompting beibringen, und was muss programmiert werden?

Unlock the power of RAG (Retrieval-Augmented Generation) and learn how to build smarter AI apps with LangChain — practical insights, real-world use cases, and hands-on tips with Kim Wee Teh at #FOSSASIASummit2025

🔗 Click here youtu.be/9X3ljJjAjqo?si=6ofwoO to watch on the FOSSASIA YouTube channel
#RAG #LangChain #LLM #AI #FOSSASIA

youtu.be- YouTubeEnjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

❓ Wie kann #KI die Arbeit zivilgesellschaftlicher Organisationen unterstützen?

☕ In unserem nächsten Espresso-Talk am 15. April von 12 bis 12.45 Uhr gibt Jonas aus unserem #CDL-Team eine Einführung in zentrale Begriffe und Konzepte rund um generative Sprachmodelle:

💭 Was sind Large Language Models (#LLM)?
💭 Was bedeutet Retrieval-Augmented Generation (#RAG)?
💭 Was sind Agents im Zusammenhang mit LLMs?
💭 Wie werden LLMs in Informationsangeboten eingesetzt?

Mehr unter: community.civic-data.de/s/will

community.civic-data.deCivic Data Cafe - community.civic-data.deCDL Espresso Talk: Grundlagen Generative Sprachmodelle und ihr Einsatz - Bevor wir uns im "Gemeinsam Machen 4"(https://community.civic-data.de/content/perma?id=11571)-Workshop (29.04. 12.30-15.30) ti...

🧠 In questo test, in una SERP di #Google in cui compare #AI Overviews, ho preso i contenuti nelle prime 12 posizioni e ho creato un piccolo #RAG usando #LangChain, #Chroma DB e #GPT4o.
✨ Inviandolo la query al RAG, ottengo una risposta simile a quella proposta da AI Overviews.
💡 Chiaramente Google usa anche query correlate ("fan-out") e il Knowledge Graph per espandere i risultati.